Files
flipper/libs/fbjni/cxx/fbjni/detail/Environment.h

130 lines
4.7 KiB
C++

/*
* Copyright (c) 2018-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the LICENSE
* file in the root directory of this source tree.
*
*/
#pragma once
#include <functional>
#include <string>
#include <jni.h>
namespace facebook {
namespace jni {
// Keeps a thread-local reference to the current thread's JNIEnv.
struct Environment {
// Throws a std::runtime_error if this thread isn't attached to the JVM
// TODO(T6594868) Benchmark against raw JNI access
static JNIEnv* current();
static void initialize(JavaVM* vm);
// There are subtle issues with calling the next functions directly. It is
// much better to always use a ThreadScope to manage attaching/detaching for
// you.
static JNIEnv* ensureCurrentThreadIsAttached();
};
namespace detail {
// This will return null the thread isn't attached to the VM, or if
// fbjni has never been initialized with a VM at all. You probably
// shouldn't be using this.
JNIEnv* currentOrNull();
/**
* If there's thread-local data, it's a pointer to one of these. The
* instance is a member of JniEnvCacher or ThreadScope, and lives on
* the stack.
*/
struct TLData {
// This is modified only by JniEnvCacher, and is guaranteed to be
// valid if set, and refer to an env which originated from a JNI
// call into C++.
JNIEnv* env;
// This is modified only by ThreadScope, and is set only if an
// instance of ThreadScope which attached is on the stack.
bool attached;
};
/**
* RAII object which manages a cached JNIEnv* value. A Value is only
* cached if it is guaranteed safe, which means when C++ is called
* from a registered fbjni function.
*/
class JniEnvCacher {
public:
JniEnvCacher(JNIEnv* env);
JniEnvCacher(JniEnvCacher&) = delete;
JniEnvCacher(JniEnvCacher&&) = default;
JniEnvCacher& operator=(JniEnvCacher&) = delete;
JniEnvCacher& operator=(JniEnvCacher&&) = delete;
~JniEnvCacher();
private:
// If this flag is set, then, this object needs to clear the cache.
bool thisCached_;
// The thread local pointer may point here.
detail::TLData data_;
};
}
/**
* RAII Object that attaches a thread to the JVM. Failing to detach from a thread before it
* exits will cause a crash, as will calling Detach an extra time, and this guard class helps
* keep that straight. In addition, it remembers whether it performed the attach or not, so it
* is safe to nest it with itself or with non-fbjni code that manages the attachment correctly.
*
* Potential concerns:
* - Attaching to the JVM is fast (~100us on MotoG), but ideally you would attach while the
* app is not busy.
* - Having a thread detach at arbitrary points is not safe in Dalvik; you need to be sure that
* there is no Java code on the current stack or you run the risk of a crash like:
* ERROR: detaching thread with interp frames (count=18)
* (More detail at https://groups.google.com/forum/#!topic/android-ndk/2H8z5grNqjo)
* ThreadScope won't do a detach if the thread was already attached before the guard is
* instantiated, but there's probably some usage that could trip this up.
* - Newly attached C++ threads only get the bootstrap class loader -- i.e. java language
* classes, not any of our application's classes. This will be different behavior than threads
* that were initiated on the Java side. A workaround is to pass a global reference for a
* class or instance to the new thread; this bypasses the need for the class loader.
* (See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/invocation.html#attach_current_thread)
* If you need access to the application's classes, you can use ThreadScope::WithClassLoader.
* - If fbjni has never been initialized, there will be no JavaVM object to attach with.
* In that case, a std::runtime_error will be thrown. This is only likely to happen in a
* standalone C++ application, or if Environment::initialize is not used.
*/
class ThreadScope {
public:
ThreadScope();
ThreadScope(ThreadScope&) = delete;
ThreadScope(ThreadScope&&) = default;
ThreadScope& operator=(ThreadScope&) = delete;
ThreadScope& operator=(ThreadScope&&) = delete;
~ThreadScope();
/**
* This runs the closure in a scope with fbjni's classloader. This should be
* the same classloader as the rest of the application and thus anything
* running in the closure will have access to the same classes as in a normal
* java-create thread.
*/
static void WithClassLoader(std::function<void()>&& runnable);
static void OnLoad();
private:
// If this flag is set, then this object needs to detach.
bool thisAttached_;
// The thread local pointer may point here.
detail::TLData data_;
};
}
}