Updated fbjni since its outdated
This commit is contained in:
@@ -32,13 +32,13 @@ target_include_directories(${PACKAGE_NAME} PUBLIC "./")
|
||||
set(libjnihack_DIR ${CMAKE_SOURCE_DIR}/../libs/jni-hack/)
|
||||
set(libfbjni_DIR ${CMAKE_SOURCE_DIR}/../libs/fbjni/src/main/cpp/include/)
|
||||
set(libsonar_DIR ${CMAKE_SOURCE_DIR}/../xplat/)
|
||||
set(third_party_ndk build/third-party-ndk)
|
||||
set(third_party_ndk ${PROJECT_SOURCE_DIR}/build/third-party-ndk)
|
||||
set(libfolly_DIR ${third_party_ndk}/folly/)
|
||||
set(glog_DIR ${third_party_ndk}/glog)
|
||||
set(BOOST_DIR ${third_party_ndk}/boost/boost_1_63_0/)
|
||||
set(LIBEVENT_DIR ${third_party_ndk}/LibEvent/libevent-1.0.0/include/)
|
||||
|
||||
set(LIBEVENT_DIR ${third_party_ndk}/LibEvent/libevent-release-2.1.9/)
|
||||
|
||||
message(STATUS "AAAANDROID LIBEVENT_DIR => " ${LIBEVENT_DIR})
|
||||
set(build_DIR ${CMAKE_SOURCE_DIR}/build)
|
||||
|
||||
set(fbjni_build_DIR ${build_DIR}/fbjni/${ANDROID_ABI})
|
||||
@@ -60,7 +60,9 @@ target_include_directories(${PACKAGE_NAME} PRIVATE
|
||||
${glog_DIR}/glog-0.3.5/src/
|
||||
${BOOST_DIR}
|
||||
${BOOST_DIR}/../
|
||||
${LIBEVENT_DIR}
|
||||
${LIBEVENT_DIR}/
|
||||
${LIBEVENT_DIR}/include/
|
||||
${LIBEVENT_DIR}/include/event2
|
||||
)
|
||||
|
||||
target_link_libraries(${PACKAGE_NAME} fb sonarcpp)
|
||||
|
||||
@@ -5,227 +5,281 @@
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#pragma once
|
||||
|
||||
#include <fb/assert.h>
|
||||
#include <fb/visibility.h>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
#include "CoreClasses.h"
|
||||
#include "CoreClasses.h"
|
||||
|
||||
namespace facebook {
|
||||
namespace jni {
|
||||
namespace facebook {
|
||||
namespace jni {
|
||||
|
||||
namespace detail {
|
||||
namespace detail {
|
||||
|
||||
class BaseHybridClass {
|
||||
public:
|
||||
virtual ~BaseHybridClass() {}
|
||||
};
|
||||
class BaseHybridClass {
|
||||
public:
|
||||
virtual ~BaseHybridClass() {}
|
||||
};
|
||||
|
||||
struct FBEXPORT HybridData : public JavaClass<HybridData> {
|
||||
constexpr static auto kJavaDescriptor = "Lcom/facebook/jni/HybridData;";
|
||||
void setNativePointer(std::unique_ptr<BaseHybridClass> new_value);
|
||||
BaseHybridClass* getNativePointer();
|
||||
static local_ref<HybridData> create();
|
||||
};
|
||||
struct HybridData : public JavaClass<HybridData> {
|
||||
constexpr static auto kJavaDescriptor = "Lcom/facebook/jni/HybridData;";
|
||||
static local_ref<HybridData> create();
|
||||
};
|
||||
|
||||
template <typename Base, typename Enabled = void>
|
||||
struct HybridTraits {
|
||||
// This static assert should actually always fail if we don't use one of the
|
||||
// specializations below.
|
||||
static_assert(
|
||||
std::is_base_of<JObject, Base>::value ||
|
||||
std::is_base_of<BaseHybridClass, Base>::value,
|
||||
"The base of a HybridClass must be either another HybridClass or derived from JObject.");
|
||||
};
|
||||
class HybridDestructor : public JavaClass<HybridDestructor> {
|
||||
public:
|
||||
static auto constexpr kJavaDescriptor = "Lcom/facebook/jni/HybridData$Destructor;";
|
||||
|
||||
template <>
|
||||
struct HybridTraits<BaseHybridClass> {
|
||||
using CxxBase = BaseHybridClass;
|
||||
using JavaBase = JObject;
|
||||
};
|
||||
detail::BaseHybridClass* getNativePointer();
|
||||
|
||||
template <typename Base>
|
||||
struct HybridTraits<
|
||||
Base,
|
||||
typename std::enable_if<std::is_base_of<BaseHybridClass, Base>::value>::type> {
|
||||
using CxxBase = Base;
|
||||
using JavaBase = typename Base::JavaPart;
|
||||
};
|
||||
void setNativePointer(std::unique_ptr<detail::BaseHybridClass> new_value);
|
||||
};
|
||||
|
||||
template <typename Base>
|
||||
struct HybridTraits<
|
||||
Base,
|
||||
typename std::enable_if<std::is_base_of<JObject, Base>::value>::type> {
|
||||
using CxxBase = BaseHybridClass;
|
||||
using JavaBase = Base;
|
||||
};
|
||||
template<typename T>
|
||||
detail::BaseHybridClass* getNativePointer(T t) {
|
||||
return getHolder(t)->getNativePointer();
|
||||
}
|
||||
|
||||
// convert to HybridClass* from jhybridobject
|
||||
template <typename T>
|
||||
struct FBEXPORT Convert<
|
||||
T, typename std::enable_if<
|
||||
std::is_base_of<BaseHybridClass, typename std::remove_pointer<T>::type>::value>::type> {
|
||||
typedef typename std::remove_pointer<T>::type::jhybridobject jniType;
|
||||
static T fromJni(jniType t) {
|
||||
if (t == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
return wrap_alias(t)->cthis();
|
||||
}
|
||||
// There is no automatic return conversion for objects.
|
||||
};
|
||||
template<typename T>
|
||||
void setNativePointer(T t, std::unique_ptr<detail::BaseHybridClass> new_value) {
|
||||
getHolder(t)->setNativePointer(std::move(new_value));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
struct RefReprType<T, typename std::enable_if<std::is_base_of<BaseHybridClass, T>::value, void>::type> {
|
||||
static_assert(std::is_same<T, void>::value,
|
||||
"HybridFoo (where HybridFoo derives from HybridClass<HybridFoo>) is not supported in this context. "
|
||||
"For an xxx_ref<HybridFoo>, you may want: xxx_ref<HybridFoo::javaobject> or HybridFoo*.");
|
||||
using Repr = T;
|
||||
};
|
||||
template<typename T>
|
||||
local_ref<HybridDestructor> getHolder(T t) {
|
||||
static auto holderField = t->getClass()->template getField<HybridDestructor::javaobject>("mDestructor");
|
||||
return t->getFieldValue(holderField);
|
||||
}
|
||||
|
||||
// JavaClass for HybridClassBase
|
||||
struct HybridClassBase : public JavaClass<HybridClassBase> {
|
||||
constexpr static auto kJavaDescriptor = "Lcom/facebook/jni/HybridClassBase;";
|
||||
|
||||
static bool isHybridClassBase(alias_ref<jclass> jclass) {
|
||||
return HybridClassBase::javaClassStatic()->isAssignableFrom(jclass);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Base, typename Enabled = void>
|
||||
struct HybridTraits {
|
||||
// This static assert should actually always fail if we don't use one of the
|
||||
// specializations below.
|
||||
static_assert(
|
||||
std::is_base_of<JObject, Base>::value ||
|
||||
std::is_base_of<BaseHybridClass, Base>::value,
|
||||
"The base of a HybridClass must be either another HybridClass or derived from JObject.");
|
||||
};
|
||||
|
||||
template <>
|
||||
struct HybridTraits<BaseHybridClass> {
|
||||
using CxxBase = BaseHybridClass;
|
||||
using JavaBase = JObject;
|
||||
};
|
||||
|
||||
template <typename Base>
|
||||
struct HybridTraits<
|
||||
Base,
|
||||
typename std::enable_if<std::is_base_of<BaseHybridClass, Base>::value>::type> {
|
||||
using CxxBase = Base;
|
||||
using JavaBase = typename Base::JavaPart;
|
||||
};
|
||||
|
||||
template <typename Base>
|
||||
struct HybridTraits<
|
||||
Base,
|
||||
typename std::enable_if<std::is_base_of<JObject, Base>::value>::type> {
|
||||
using CxxBase = BaseHybridClass;
|
||||
using JavaBase = Base;
|
||||
};
|
||||
|
||||
// convert to HybridClass* from jhybridobject
|
||||
template <typename T>
|
||||
struct Convert<
|
||||
T, typename std::enable_if<
|
||||
std::is_base_of<BaseHybridClass, typename std::remove_pointer<T>::type>::value>::type> {
|
||||
typedef typename std::remove_pointer<T>::type::jhybridobject jniType;
|
||||
static T fromJni(jniType t) {
|
||||
if (t == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
return wrap_alias(t)->cthis();
|
||||
}
|
||||
// There is no automatic return conversion for objects.
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct RefReprType<T, typename std::enable_if<std::is_base_of<BaseHybridClass, T>::value, void>::type> {
|
||||
static_assert(std::is_same<T, void>::value,
|
||||
"HybridFoo (where HybridFoo derives from HybridClass<HybridFoo>) is not supported in this context. "
|
||||
"For an xxx_ref<HybridFoo>, you may want: xxx_ref<HybridFoo::javaobject> or HybridFoo*.");
|
||||
using Repr = T;
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename Base = detail::BaseHybridClass>
|
||||
class FBEXPORT HybridClass : public detail::HybridTraits<Base>::CxxBase {
|
||||
public:
|
||||
struct JavaPart : JavaClass<JavaPart, typename detail::HybridTraits<Base>::JavaBase> {
|
||||
// At this point, T is incomplete, and so we cannot access
|
||||
// T::kJavaDescriptor directly. jtype_traits support this escape hatch for
|
||||
// such a case.
|
||||
static constexpr const char* kJavaDescriptor = nullptr;
|
||||
static std::string get_instantiated_java_descriptor();
|
||||
static std::string get_instantiated_base_name();
|
||||
template <typename T, typename Base = detail::BaseHybridClass>
|
||||
class HybridClass : public detail::HybridTraits<Base>::CxxBase {
|
||||
public:
|
||||
struct JavaPart : JavaClass<JavaPart, typename detail::HybridTraits<Base>::JavaBase> {
|
||||
// At this point, T is incomplete, and so we cannot access
|
||||
// T::kJavaDescriptor directly. jtype_traits support this escape hatch for
|
||||
// such a case.
|
||||
static constexpr const char* kJavaDescriptor = nullptr;
|
||||
static std::string get_instantiated_java_descriptor();
|
||||
static std::string get_instantiated_base_name();
|
||||
|
||||
using HybridType = T;
|
||||
using HybridType = T;
|
||||
|
||||
// This will reach into the java object and extract the C++ instance from
|
||||
// the mHybridData and return it.
|
||||
T* cthis();
|
||||
// This will reach into the java object and extract the C++ instance from
|
||||
// the mHybridData and return it.
|
||||
T* cthis();
|
||||
|
||||
friend class HybridClass;
|
||||
};
|
||||
friend class HybridClass;
|
||||
friend T;
|
||||
};
|
||||
|
||||
using jhybridobject = typename JavaPart::javaobject;
|
||||
using javaobject = typename JavaPart::javaobject;
|
||||
typedef detail::HybridData::javaobject jhybriddata;
|
||||
using jhybridobject = typename JavaPart::javaobject;
|
||||
using javaobject = typename JavaPart::javaobject;
|
||||
typedef detail::HybridData::javaobject jhybriddata;
|
||||
|
||||
static alias_ref<JClass> javaClassStatic() {
|
||||
return JavaPart::javaClassStatic();
|
||||
}
|
||||
static alias_ref<JClass> javaClassStatic() {
|
||||
return JavaPart::javaClassStatic();
|
||||
}
|
||||
|
||||
static local_ref<JClass> javaClassLocal() {
|
||||
std::string className(T::kJavaDescriptor + 1, strlen(T::kJavaDescriptor) - 2);
|
||||
return findClassLocal(className.c_str());
|
||||
}
|
||||
static local_ref<JClass> javaClassLocal() {
|
||||
std::string className(T::kJavaDescriptor + 1, strlen(T::kJavaDescriptor) - 2);
|
||||
return findClassLocal(className.c_str());
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef HybridClass HybridBase;
|
||||
protected:
|
||||
typedef HybridClass HybridBase;
|
||||
|
||||
// This ensures that a C++ hybrid part cannot be created on its own
|
||||
// by default. If a hybrid wants to enable this, it can provide its
|
||||
// own public ctor, or change the accessibility of this to public.
|
||||
using detail::HybridTraits<Base>::CxxBase::CxxBase;
|
||||
// This ensures that a C++ hybrid part cannot be created on its own
|
||||
// by default. If a hybrid wants to enable this, it can provide its
|
||||
// own public ctor, or change the accessibility of this to public.
|
||||
using detail::HybridTraits<Base>::CxxBase::CxxBase;
|
||||
|
||||
static void registerHybrid(std::initializer_list<NativeMethod> methods) {
|
||||
javaClassStatic()->registerNatives(methods);
|
||||
}
|
||||
static void registerHybrid(std::initializer_list<NativeMethod> methods) {
|
||||
javaClassStatic()->registerNatives(methods);
|
||||
}
|
||||
|
||||
static local_ref<detail::HybridData> makeHybridData(std::unique_ptr<T> cxxPart) {
|
||||
auto hybridData = detail::HybridData::create();
|
||||
hybridData->setNativePointer(std::move(cxxPart));
|
||||
return hybridData;
|
||||
}
|
||||
static local_ref<detail::HybridData> makeHybridData(std::unique_ptr<T> cxxPart) {
|
||||
auto hybridData = detail::HybridData::create();
|
||||
setNativePointer(hybridData, std::move(cxxPart));
|
||||
return hybridData;
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
static local_ref<detail::HybridData> makeCxxInstance(Args&&... args) {
|
||||
return makeHybridData(std::unique_ptr<T>(new T(std::forward<Args>(args)...)));
|
||||
}
|
||||
template <typename... Args>
|
||||
static local_ref<detail::HybridData> makeCxxInstance(Args&&... args) {
|
||||
return makeHybridData(std::unique_ptr<T>(new T(std::forward<Args>(args)...)));
|
||||
}
|
||||
|
||||
public:
|
||||
// Factory method for creating a hybrid object where the arguments
|
||||
// are used to initialize the C++ part directly without passing them
|
||||
// through java. This method requires the Java part to have a ctor
|
||||
// which takes a HybridData, and for the C++ part to have a ctor
|
||||
// compatible with the arguments passed here. For safety, the ctor
|
||||
// can be private, and the hybrid declared a friend of its base, so
|
||||
// the hybrid can only be created from here.
|
||||
//
|
||||
// Exception behavior: This can throw an exception if creating the
|
||||
// C++ object fails, or any JNI methods throw.
|
||||
template <typename... Args>
|
||||
static local_ref<JavaPart> newObjectCxxArgs(Args&&... args) {
|
||||
auto hybridData = makeCxxInstance(std::forward<Args>(args)...);
|
||||
return JavaPart::newInstance(hybridData);
|
||||
}
|
||||
template <typename... Args>
|
||||
static void setCxxInstance(alias_ref<jhybridobject> o, Args&&... args) {
|
||||
setNativePointer(o, std::unique_ptr<T>(new T(std::forward<Args>(args)...)));
|
||||
}
|
||||
|
||||
public:
|
||||
// Factory method for creating a hybrid object where the arguments
|
||||
// are used to initialize the C++ part directly without passing them
|
||||
// through java. This method requires the Java part to have a ctor
|
||||
// which takes a HybridData, and for the C++ part to have a ctor
|
||||
// compatible with the arguments passed here. For safety, the ctor
|
||||
// can be private, and the hybrid declared a friend of its base, so
|
||||
// the hybrid can only be created from here.
|
||||
//
|
||||
// Exception behavior: This can throw an exception if creating the
|
||||
// C++ object fails, or any JNI methods throw.
|
||||
template <typename... Args>
|
||||
static local_ref<JavaPart> newObjectCxxArgs(Args&&... args) {
|
||||
static bool isHybrid = detail::HybridClassBase::isHybridClassBase(javaClassStatic());
|
||||
auto cxxPart = std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
||||
|
||||
local_ref<JavaPart> result;
|
||||
if (isHybrid) {
|
||||
result = JavaPart::newInstance();
|
||||
setNativePointer(result, std::move(cxxPart));
|
||||
}
|
||||
else {
|
||||
auto hybridData = makeHybridData(std::move(cxxPart));
|
||||
result = JavaPart::newInstance(hybridData);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// TODO? Create reusable interface for Allocatable classes and use it to
|
||||
// strengthen type-checking (and possibly provide a default
|
||||
// implementation of allocate().)
|
||||
template <typename... Args>
|
||||
static local_ref<jhybridobject> allocateWithCxxArgs(Args&&... args) {
|
||||
auto hybridData = makeCxxInstance(std::forward<Args>(args)...);
|
||||
static auto allocateMethod =
|
||||
javaClassStatic()->template getStaticMethod<jhybridobject(jhybriddata)>("allocate");
|
||||
return allocateMethod(javaClassStatic(), hybridData.get());
|
||||
}
|
||||
// strengthen type-checking (and possibly provide a default
|
||||
// implementation of allocate().)
|
||||
template <typename... Args>
|
||||
static local_ref<jhybridobject> allocateWithCxxArgs(Args&&... args) {
|
||||
auto hybridData = makeCxxInstance(std::forward<Args>(args)...);
|
||||
static auto allocateMethod =
|
||||
javaClassStatic()->template getStaticMethod<jhybridobject(jhybriddata)>("allocate");
|
||||
return allocateMethod(javaClassStatic(), hybridData.get());
|
||||
}
|
||||
|
||||
// Factory method for creating a hybrid object where the arguments
|
||||
// are passed to the java ctor.
|
||||
template <typename... Args>
|
||||
static local_ref<JavaPart> newObjectJavaArgs(Args&&... args) {
|
||||
return JavaPart::newInstance(std::move(args)...);
|
||||
}
|
||||
// Factory method for creating a hybrid object where the arguments
|
||||
// are passed to the java ctor.
|
||||
template <typename... Args>
|
||||
static local_ref<JavaPart> newObjectJavaArgs(Args&&... args) {
|
||||
return JavaPart::newInstance(std::move(args)...);
|
||||
}
|
||||
|
||||
// If a hybrid class throws an exception which derives from
|
||||
// std::exception, it will be passed to mapException on the hybrid
|
||||
// class, or nearest ancestor. This allows boilerplate exception
|
||||
// translation code (for example, calling throwNewJavaException on a
|
||||
// particular java class) to be hoisted to a common function. If
|
||||
// mapException returns, then the std::exception will be translated
|
||||
// to Java.
|
||||
static void mapException(const std::exception& ex) {}
|
||||
};
|
||||
// If a hybrid class throws an exception which derives from
|
||||
// std::exception, it will be passed to mapException on the hybrid
|
||||
// class, or nearest ancestor. This allows boilerplate exception
|
||||
// translation code (for example, calling throwNewJavaException on a
|
||||
// particular java class) to be hoisted to a common function. If
|
||||
// mapException returns, then the std::exception will be translated
|
||||
// to Java.
|
||||
static void mapException(const std::exception& ex) {}
|
||||
};
|
||||
|
||||
template <typename T, typename B>
|
||||
inline T* HybridClass<T, B>::JavaPart::cthis() {
|
||||
static auto field =
|
||||
HybridClass<T, B>::JavaPart::javaClassStatic()->template getField<detail::HybridData::javaobject>("mHybridData");
|
||||
auto hybridData = this->getFieldValue(field);
|
||||
if (!hybridData) {
|
||||
throwNewJavaException("java/lang/NullPointerException", "java.lang.NullPointerException");
|
||||
}
|
||||
// I'd like to use dynamic_cast here, but -fno-rtti is the default.
|
||||
T* value = static_cast<T*>(hybridData->getNativePointer());
|
||||
// This would require some serious programmer error.
|
||||
FBASSERTMSGF(value != 0, "Incorrect C++ type in hybrid field");
|
||||
return value;
|
||||
};
|
||||
template <typename T, typename B>
|
||||
inline T* HybridClass<T, B>::JavaPart::cthis() {
|
||||
detail::BaseHybridClass* result = 0;
|
||||
static bool isHybrid = detail::HybridClassBase::isHybridClassBase(this->getClass());
|
||||
if (isHybrid) {
|
||||
result = getNativePointer(this);
|
||||
} else {
|
||||
static auto field =
|
||||
HybridClass<T, B>::JavaPart::javaClassStatic()->template getField<detail::HybridData::javaobject>("mHybridData");
|
||||
auto hybridData = this->getFieldValue(field);
|
||||
if (!hybridData) {
|
||||
throwNewJavaException("java/lang/NullPointerException", "java.lang.NullPointerException");
|
||||
}
|
||||
|
||||
template <typename T, typename B>
|
||||
/* static */ inline std::string HybridClass<T, B>::JavaPart::get_instantiated_java_descriptor() {
|
||||
return T::kJavaDescriptor;
|
||||
}
|
||||
result = getNativePointer(hybridData);
|
||||
}
|
||||
|
||||
template <typename T, typename B>
|
||||
/* static */ inline std::string HybridClass<T, B>::JavaPart::get_instantiated_base_name() {
|
||||
auto name = get_instantiated_java_descriptor();
|
||||
return name.substr(1, name.size() - 2);
|
||||
}
|
||||
// I'd like to use dynamic_cast here, but -fno-rtti is the default.
|
||||
return static_cast<T*>(result);
|
||||
};
|
||||
|
||||
// Given a *_ref object which refers to a hybrid class, this will reach inside
|
||||
// of it, find the mHybridData, extract the C++ instance pointer, cast it to
|
||||
// the appropriate type, and return it.
|
||||
template <typename T>
|
||||
inline auto cthis(T jthis) -> decltype(jthis->cthis()) {
|
||||
return jthis->cthis();
|
||||
}
|
||||
template <typename T, typename B>
|
||||
/* static */ inline std::string HybridClass<T, B>::JavaPart::get_instantiated_java_descriptor() {
|
||||
return T::kJavaDescriptor;
|
||||
}
|
||||
|
||||
void HybridDataOnLoad();
|
||||
template <typename T, typename B>
|
||||
/* static */ inline std::string HybridClass<T, B>::JavaPart::get_instantiated_base_name() {
|
||||
auto name = get_instantiated_java_descriptor();
|
||||
return name.substr(1, name.size() - 2);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
// Given a *_ref object which refers to a hybrid class, this will reach inside
|
||||
// of it, find the mHybridData, extract the C++ instance pointer, cast it to
|
||||
// the appropriate type, and return it.
|
||||
template <typename T>
|
||||
inline auto cthis(T jthis) -> decltype(jthis->cthis()) {
|
||||
return jthis->cthis();
|
||||
}
|
||||
|
||||
void HybridDataOnLoad();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*/
|
||||
|
||||
#include "fb/fbjni.h"
|
||||
#include "fb/fbjni.h"
|
||||
|
||||
|
||||
namespace facebook {
|
||||
|
||||
Reference in New Issue
Block a user